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In this paper, a newly derived algorithm to predict locations and severities of damage in
structures using changes in modal characteristics is presented. First, two existing algorithms
of damage detection are reviewed and the new algorithm is formulated in order to improve
the accuracy of damage localization and severity estimation by eliminating erratic
assumptions and limits in the existing algorithms. Next, the damage prediction accuracy is
numerically assessed for each algorithm when applied to a two-span continuous beam for
which pre- and post-damage modal parameters are available for only a few modes of
vibration. Compared to the existing damage detection algorithms, the new algorithm
improved the accuracy of damage localization and severity estimation results in the test
beam.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

This paper deals with the general problem of utilizing changes in dynamic modal
parameters of structures to non-destructively detect, locate, and estimate the severity of
damage in these structures. Structural damage may be de"ned as any deviation of
a geometric or material property de"ning a structure that may result in unwanted responses
of the structure. A solution to this problem is important for at least two reasons. Firstly,
damage localization and severity estimation are the "rst two steps in the broader category
of damage assessment. Secondly, a timely damage assessment could produce desirable
consequences such as saving of lives, reduction of human su!ering, protection of property,
increased reliability, increased productivity of operations, and reduction in maintenance
costs.
During the past decade, a signi"cant amount of research has been conducted in the area

of damage detection using the dynamic response of a structure. Research e!orts have been
made to detect structural damage directly from dynamic response measurements in the time
domain, e.g., the random decrement technique [1, 2], or from frequency response functions
(FRF) [3]. Also, methods have been proposed to detect damage using system identi"cation
techniques [4, 5]. Many research studies have been conducted in the area of non-destructive
damage detection (NDD) using changes in modal parameters. Research studies have related
changes in natural frequencies to changes in beam properties such as cracks, notches or
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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other geometrical changes [6}8]. Studies have also focused on the possibility of using the
vibration characteristics of structures as an indication of structural damage [9}12]. Since
1988, studies on the topic appear to be accelerating. Attempts have been made to monitor
structural integrity of bridges [3, 13], to investigate feasibility of damage detection in
large-space structures using changes in modal parameters [14, 15], and to localize damage
in beam-type structures using changes in mode shapes characteristics [16, 17].
Despite these research e!orts, however, many problems related to vibration-based

damage detection remain unsolved today. Outstanding needs remain to locate and estimate
the severity of damage: (a) in structures with only few available modes, (b) in structures with
many members, (c) in structures for which baseline modal responses are not available, and
(d) in an environment of uncertainty associated with modelling, measurement, and
processing errors.
In this paper, we present a new vibration-based NDD algorithm to locate and estimate

severity of damage in structures. The proposed methodology is presented here in two parts.
In the "rst part, we outline vibration-basedNDD algorithms.We "rst review existing NDD
algorithms proposed by Kim and Stubbs [16, 18]. Then we formulate a new NDD
algorithm to improve its accuracy in damage localization and severity estimation by
eliminating erratic assumptions and limits in the existing NDD algorithms. In the second
part, we demonstrate the feasibility of the new NDD algorithm using numerical examples.
The new NDD algorithm and two existing ones are evaluated by predicting damage
locations and estimating severities of damage in a two-span continuous beam for which
limited modal parameters are available for a few modes of vibration. The performance of
each algorithm is assessed quantifying the accuracy of damage prediction results.
In the structures of interest in this study, the objective is to detect low magnitude damage

at a very early stage. In such cases, changes in modal parameters between the undamaged
and damaged structures are small and the application of the modal assurance criterion
provides a reliable means of identifying the modes [19]. In the extreme case when only the
damaging mode is available the technique of generating a baseline modal model using the
updating of a "nite element model of the structure can be used [18].

2. EXISTING DAMAGE DETECTION ALGORITHMS

For a linear, undamaged, skeletal structure with ne elements and n nodes, the ith modal
sti!ness of the arbitrary structure is given by
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where �
�
is the ith modal vector and C is the system sti!ness matrix. The contribution of jth

member to ith modal sti!ness, K
��
, is given by
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where C
�
is the contribution of jth member to the system sti!ness matrix. Then, the fraction

of modal energy (i.e., the undamaged modal sensitivity) of the ith mode and the jth member
is de"ned as

F
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�
. (3)

Let the corresponding modal parameters in equations (1)} (3) associated with
a subsequently damaged structure be characterized by asterisks. Then for the damaged
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structure, the damaged sensitivity of the ith mode and the jth member is de"ned as
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in which the quantities K*
��
and K*

�
are given by
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The quantities C
�
and C*

�
in equations (2) and (5a) may be written as follows:
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where the scalars E
�
and E*

�
are parameters representing material sti!ness properties of

undamaged and damaged jth members, respectively. The matrix C
��

involves only
geometric quantities (and possibly terms containing Poisson's ratio) and it can represent
beam or plate elements.

2.1. DAMAGE INDEX A [16]

Suppose we make an approximation that the modal sensitivities for the ith mode and the
jth location is the same for both undamaged and damaged structure (i.e., F*

��
+F

��
). Then

equations (3) and (4) are combined and reduced to the following expression:
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On substituting equations (1), (2), (5), and (6) into equation (7) and by rearranging, a damage
index �

�
of jth member (and for nm modes involved) is obtained by [16]
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in which �
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and damage is indicated at jth member if
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'1.
The severity of damage in the jth member is estimated as follows. Let the fractional

change in the sti!ness of the jth member be given by the severity estimator, �
�
, then
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Combining equations (8) and (9) yields
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where damage severity is indicated as the reduction in sti!ness in the jth member if �
�
(0.

2.2. DAMAGE INDEX B [17]

From equation (8), damage is indicated at jth member if �
�
'1. However, the same

equation becomes singular if the denominator goes zero. This condition will occur when



226 J.-T. KIM AND N. STUBBS
simultaneously, the element size approaches zero and the element location coincides with
a nodal point of a mode. To overcome this limitation (i.e., the division by zero di$culty), an
approximation is made such that the axis of reference for the modal sensitivities is shifted by
a value of 1)0 (i.e., F

��
PF

��
#1 and F*

��
PF*

��
#1). Adding unity to both the numerator and

the denominator of equation (7) yields

(F*
��
#1)/(F

��
#1)"[(K*

��
#K*

�
)K

�
]/[(K

��
#K

�
)K*

�
]"1. (11)

On substituting equations (1), (2), (5), and (6) into equation (11) and by rearranging,
a damage index �

�
of jth member (and for nm modes) is obtained by
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where damage is indicated at the jth location if �
�
'1. Once damage is localized at the jth

member, its severity can be estimated in the same way as described previously. Applying
equation (12) to equation (9) yields
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where damage severity is indicated as the reduction in sti!ness in the jth member if �
�
(0.

3. UPDATED ALGORITHM*DAMAGE INDEX C

Let �
�
and �*

�
be the ith eigenvalues of pre- and post-damage multi-degree-of-freedom

(mdof) structural systems respectively. Then the ith eigenvalues can be related to the
following forms:
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in which K
�
and M

�
are the ith modal sti!ness and the ith modal mass of the undamaged

system respectively. Also, d�
�
, dK

�
, and dM

�
are the change in the ith eigenvalue, the change

in the ith modal sti!ness, and the change in the ith modal mass in the system.
On expanding and rearranging equation (14), we obtain
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where dK
�
/K

�
represents the fractional change of the ith modal sti!ness and all the terms on

the right-hand side of the above equation can be determined directly or via experimental
measurements.
For the ith mode and the jth location, the undamaged and damaged modal sensitivities,

F
��
and F*

��
, are related by the equation
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where dF
��
represents the fractional change of modal energy at the jth member and for the

ith mode. On di!erentiating equations (3) and (16), the quantity dF
��
can be obtained from
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the expression
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where dK
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represents the fractional change in K
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. Also, by noticingK
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can be reduced to the following form:
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Next, combining equations (2) and (6) and also combining equations (5) and (6),
respectively, gives
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On dividing both sides of equation (20) by K
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), substituting into

equation (19), and only solving for the fractional change in the jth member's sti!ness, we
obtain
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Assuming the structure is damaged at a single location and the resulting change in K
��
is

only the function of E
�
, the "rst approximation of dK

��
can be obtained from the expression
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in which
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On substituting equation (23) into equation (22) and further approximating gives
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Since we have assumed that the structure is damaged in a single location, it follows
readily that dK
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/nd if the structure is damaged in nd multiple
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locations, in which the nd locations can be predicted). Then by substituting equation (15)
into equation (24), the fractional changes in modal sti!ness can be approximately related to
the fractional changes in modal properties:
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in which g
�
(�, �) is the dimensionless factor representing the systematic change in modal

parameters of the ith mode due to the damage.
By applying equations (22)}(26) to equation (21), a new damage index for ith mode and

jth location is given by
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For nm vibration modes, a damage index �
�
for the jth location is obtained by
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Once damage is located at the jth member, damage severity of the jth member is estimated
directly from equations (21), (27), and (28).
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where damage severity is indicated as the reduction in sti!ness in the jth member if �
�
(0.

The method described above yields information on the location and severity of damage
directly from changes in mode shapes of structures. The appealing features of this method
include the following: (1) damage can be located and sized using a few modes; (2) damage
can be located and sized without solving a system of equations; and (3) damage can be
located and sized in structures containing many members.

4. NUMERICAL VERIFICATION OF THE THEORY

The objective here is to evaluate the feasibility of the proposed algorithm to localize and
estimate the severity of damage in a numerical model of a structure when only data on a few
modes of vibration are available. We meet this objective in four steps: "rstly, a test structure
is de"ned and modal responses of the test structure are generated using the software
package ABAQUS; secondly, a damage detection model of the test structure is selected;
thirdly, the existing NDD algorithms (damage index A and damage index B) and the
proposed algorithm (damage index C) are used to locate and estimate the severity of
simulated damage in the test structure; and "nally, the accuracy of NDD algorithm is
evaluated by quantifying the damage prediction results. Here, by damage detection model
we mean a mathematical representation of a structure with degrees of freedom
corresponding to actual sensor readings or interpolated readings based on sensor readings
at nearby locations.
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4.1. DESCRIPTION OF TEST STRUCTURE

The test structure selected here is a theoretical model of a two-span continuous beam
[16, 18]. In their previous work, Kim and Stubbs [16] identi"ed a realistic theoretical
model of a model plate-girder structure by "ne-tuning experimental responses and a "nite
element model of the structure. As shown in Figure 1, the main structural subsystems of the
theoretical model consisted of three element groups: (1) 50 beam members modelling the
two-span continuous beam section; (2) two linear axial springs (Spring 1) modelling two
outside supports; and (3) a linear axial spring (Spring 2) modelling a middle support.
A typical arrangement of the test beam corresponding to 51 nodal points is schematized in
Figure 1. In this hypothetical example we assume that only vertical motion is measured at
each nodal point. Values for the material properties of the beam elements and springs were
assigned as follows: (1) the elastic modulus E"70 GPa; (2) Poisson's ratio �"0)33; and (3)
the linear mass density �"2710 kg/m�. Values for the geometric properties were assigned
as follows: (1) for beam elements, the cross-sectional area A"1)05�10��m� and the
second moment of area I"7)23�10��m	; (2) for Spring 1 member, A"4)96�10�
m�

and I+0; and (3) for Spring 2 member, A"8)4�10�
m� and I+0.
Next, we measured, via numerical simulation, the pre- and post-damagemodal responses

of the test structure. Here 10 damage cases are investigated, as summarized in Table 1. Each
scenario represents a potential damage event that is typical to the existing beam-type
bridges. It is also considered to account for the relationship between the modal sensitivity
and the selected damage locations. A few locations that are relatively less sensitive to at least
one mode are involved in the damage scenarios.
For example, Case 5 was selected to simulate an element near the middle support.

Meanwhile, Case 7 was selected to simulate another element in the middle of the span. The
"rst eight damage cases are limited to the model damaged only at a single location. Cases
6}8 focus on Element 39 in which three magnitude levels of damage are simulated. The last
two damage cases (Cases 9 and 10) consider the model damaged in two locations. In all
cases, damage was simulated in the structure by reducing the elastic modulus of the
appropriate elements. Typical responses which are numerically generated (e.g., mode shapes
and frequencies of the "rst three modes) are shown in Figure 2 and Table 1.
Figure 1. Schematic of two-span continuous beam.



TABLE 1

Damage scenarios and natural frequencies of two-span continuous beam

Simulated damage Natural frequency (Hz)
Damage
case Location Severity� Mode 1 Mode 2 Mode 3

Undamaged * * 32)381 46)377 118)77
1 4 !10 32)368 46)356 118)66
2 9 !10 32)328 46)309 118)69
3 14 !10 32)314 46)331 118)74
4 19 !10 32)346 46)376 118)58
5 24 !10 32)379 46)282 118)75
6 39 !1 32)361 46)358 118)77
7 39 !10 31)179 46)188 118)77
8 39 !50 31)371 45)432 118)77
9 9, 34 !10, !10 32)276 46)297 118)52

10 14, 39 !10, !10 32)247 46)266 118)74

�Severity (%)"(E*!E)/E�100.

Figure 2. Mode shapes of two-span continuous beam.
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4.2. DAMAGE LOCALIZATION AND SEVERITY ESTIMATION

Locations and severities of damage were predicted in the test structure. The two existing
NDD algorithms (i.e., damage index A and damage index B) and the proposed NDD
algorithm (i.e., damage index C) were examined. For each NDD algorithm involved, the
damage localization and severity estimation are performed as follows. Firstly, pre- and
post-damage modal parameters of the "rst three modes (as shown in Figure 2 and Table 1)
were obtained from modal analysis of the test structure. Secondly, Euler}Bernoulli beam
was selected as damage detection model of the test structure. This selection is based on the
fact that the test model is a one-dimensional beam with only vertical motions are available.
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From the mode shape of the ith modal vector �
�
(x), we generated a third order spline

function, w(x), for the beam using the 51 nodal displacements. Using the spline
approximation of the mode shape, we computed the instantaneous curvature of the mode
shape, ��

�
(x)"w�(x) at the 51 nodes of the test model. Then equivalent expressions for �
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,
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, and �

�
in the damage index equations (e.g., equations (8), (12), and (27)) were computed by
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in which x
�
and x

�
#�x

�
correspond to two nodal locations of an element j for the beam

model.
In Step 3, we established robust statistical criteria for damage localization. For a given set

of modes, the locations of damage are selected on the basis of a rejection of hypotheses in
the statistical sense [20, 21]. First, the value �

�
( j"1, 2, 3,2 , ne) associated with each

member is treated as a random variable �. In other words, the collection of the damage
indices �

�
represents a sample population (we further assume the variables are distributed

normally). The normalized indicator is given by
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�
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, (31)

in which ��
�
and �

�
are mean and standard deviation of the collection of indicators of

�
�

values respectively. Next, the member is assigned to damage class via
a statistical-pattern-recognition technique that utilizes hypothesis testing. The null
hypothesis (i.e., H

�
) is that the structure is not damaged at the jth location. The alternate

hypothesis (i.e., H
�
) is that the structure is damaged at the jth location. We de"ne the

decision rule as follows: (1) select H
�
(i.e., no damage exists at member j) if Z

�
(2 or (2)

select the alternate H
�

if Z
�
*2. This criterion corresponds to a one-tailed test at

a signi"cance level of 0)023 (97)7% con"dence level).
For damage index A, the damage indicator, equation (8), and the above criterion were

used to select the potential damage location (see column 4 in Table 2). For damage index B,
we repeated the exercises using equation (12) and the predicted potential damage locations
(see column 6 in Table 2). Finally, for damage index C, we repeated the same procedures
using equation (28) and the predicted potential damage locations (see column 8 in Table 2).
Among the 10 damage cases, three cases were illustrated closely: damage case 1 (Figure 3),
damage case 5 (Figure 4), and damage case 10 (Figure 5). Damage indices B and C have
higher localization accuracy than damage index A (see also Table 2).
Finally, we estimated severities of damage at the predicted damage locations. Estimation

was performed for damage indices A (i.e., equation (9)), damage index B (i.e., equation (13)),
and damage index C (i.e., equation (29)) respectively. The severity estimation results are
listed in Table 2 as follows: Column 5 for damage index A, Column 7 for damage index B,
Column 9 for damage index C. Figures 3}5 show the accuracy of severity prediction for
damage cases 1, 5, and 10 respectively. Damage index C shows the best results, while
damage index A overestimated the severities and damage index B underestimated those
values.

4.3. DAMAGE PREDICTION ACCURACY

The damage prediction accuracy was quanti"ed by measuring metrical errors and by
using the test of hypotheses as well [16, 22]. In this study, the uncertainty related to
modelling errors, measurement errors, or any other types were not accounted in this



TABLE 2

Damage prediction results of two-span continuous beam

Predicted damage Predicted damage Predicted damage
Simulated damage (damage index A) (damage index B) (damage index C)

Damage
case Location Severity� Location Severity� Location Severity� Location Severity�

1 4 !10 1, 4 !12)8, !18)9 4 !3)8 4 !11)9
25, 26 !8)6, !23)5

2 9 !10 1, 9 !11)6, !18)7 9 !1)3 9 !10)7
26 !20)9

3 14 !10 14, 26 !18)3, !31)4 14 !1)4 14 !9)4
4 19 !10 19, 26 !18)1, !16)8 19 !0)8 19 !9)5
5 24 !10 24, 25 !15)7, !18)7 24 !0)5 24 !9)3

26 !7)6
6 39 !1 25, 26 !11)1, !7)3 39 !0)1 39 !1)0

(!), 49 (!), !5)2
7 39 !10 25, 39 !29)0, !18)5 39 !1)5 39 !9)6
8 39 !50 25, 39 !6)72, !72)7 39 !14)8 39 !46)4
9 9, 34 !10, !10 9, 34 !18)3, !17)5 9, 34 !1)3, !1)1 9, 34 !11)1, !8)0

50 !7)7
10 14, 39 !10, !10 14, 26 !17)4, !11)3 14, 39 !1)4, !1)4 14, 39 !10)3, !10)9

39 !17)7

�Severity (%)"(E*!E)/E�100.
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Figure 3. Damage prediction results of damage case 1. (a) Damage Index A, (b) Damage Index B, (c) Damage
Index C. �, True; � Predict.
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accuracy assessment. As the "rst NDD accuracy measure, we selected a mean localization
error (mle) de"ned as

mle"
1

N

	
�
���

x

�
!x�

�
 /¸, 0)mle)1, (32)

where N is the number of damage cases, x

�
and x�

�
are the true location and the predicted

location of the ith damage case, respectively, and ¸ is a characteristic distance (e.g., a span of
the beam model).



Figure 4. Damage prediction results of damage case 5.(a) Damage Index A, (b) Damage Index B, (c) Damage
Index C. �, True; � Predict.
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As the second NDD accuracy measure, we selected a detection missing error (dme)
de"ned as

dme"
1

N¹

	
�
���

¹I, 0)dme)1, (33)

whereN¹ is the number of true damage locations, ¹I is the number of Type I errors (fail in
detection of true damage locations) for the number of true damage locations. The dme
measures false negative errors such that true damage locations are not predicted. If dme"0,
it means that all true damage locations are predicted.



Figure 5. Damage prediction results of damage case 10. (a) Damage Index A, (b) Damage Index B, (c) Damage
Index C. �, True; � Predict.
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As the third NDD accuracy measure, we selected a false alarm error ( fae) de"ned as

fae"
1

NF

	
�
���

¹II, 0)fae(R, (34)

where NF is the number of the predicted locations, ¹II is the number of Type II errors
(prediction of locations that are not damaged). The fae measures false-positive errors such
that predicted locations are not the true damage locations. If fae"0, then all predicted
locations correctly locate the damage.
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As the last NDD accuracy measure, we selected a mean sizing error (mse) that is de"ned
as

mse"
1

NF

	
�
���

(�

�
!��

�
)/��

�
, 0)mse)R, (35)

where �

�
and ��

�
are, respectively, a true damage severity and a predicted damage severity for

ith location. The mse measures the NDD algorithm's accuracy in severity estimation and
the value close to zero means that the severity estimation error is close to zero.
We implemented the four NDD accuracy measures given by equations (32)} (35) to the

damage localization and severity estimation results of each NDD algorithm. Then the
accuracy of each NDD algorithm was quanti"ed as listed in Table 3. From the table, three
major results are observed. Firstly, the accuracy measures for damaged index A are
analyzed as follows: (1) a dme of 0)083 indicates that 11 out of 12 true damage locations can
be predicted; (2) a fae of 0)57 indicates that about 6 out of 10 predicted locations can be
false-positive (i.e., about 60% of predicted locations are false-alarmed); (3) a mle of 0)133
indicates that damage can be located within about a distance of 0)13¸ (13% of span length)
from the correct location of damage; and (4) a mse of 0)75 indicates that the estimated
severities show an average 75% error and it consistently overestimates severity levels by
about 1)75 times of the true damage sizes.
Secondly, for damage index B, the accuracy measures are interpreted as follows: (1) all

localization error measures (dme, fae, and mle) are zero (i.e., there are no localization errors)
and (2) a mse of 0)853 indicates that the estimated severities show an average 85)3% error
and it consistently underestimates severity levels by about 0)15 times of the true damage
sizes. Finally, for damage index C, the accuracy measures are interpreted as follows: (1) all
localization error measures are zero (i.e., there are no localization errors) and (2) a mse of
0)077 indicates that the estimated severities show an average 7)7% error. As listed in
Table 2, the predicted severities are very close to the true damage sizes. Compared to two
other NDD algorithms, damage index C enhanced the accuracy of the damage localization
and severity estimation results.
In a previous study [16], the impact of the uncertainty in mode shapes measurements on

the accuracy of damage localization using damage index B was studied. Mode shape
measurements were assigned uncertainties associated with coe$cients of variation (CO<)
ranging from 0)01 to 0)3. As expected, the uncertainty in mode shape measurements did
in#uence such performance indicators of the damage detection scheme as the number of
Type I errors, the number of Type II errors, and the error in the predicted magnitude of the
damage. However, for the worst case (CO<"0)3), it was concluded that damage could be
con"dently located to within a fraction of 0)13 the length of the span and the error in the
TABLE 3

Quanti,cation of damage prediction accuracy

Measures of damage prediction accuracy
Damage detection
algorithm type dme fae mle mse

Damage index A 0)083 0)570 0)133 0)750
Damage index B 0 0 0 0)853
Damage index C 0 0 0 0)077



DAMAGE IDENTIFICATION METHOD 237
severity estimation was less than 24% [16]. Although the existing algorithms show their
robustness in the uncertainty circumstances, the relative impact of the uncertainties on the
accuracy of damage identi"cation using damage index C will be examined as an extended
study.

5. SUMMARY AND CONCLUSIONS

The objective of this paper was to present an improved, vibration-based, damage
detection algorithm which was newly derived and to evaluate the accuracy of the algorithm
when applied to a two-span continuous beam. This objective was achieved in two parts. In
this "rst part, we reviewed existing damage detection algorithms and their limits in the
accuracy of damage detection. Then we formulated a new damage detection algorithm that
overcomes the limits of the existing algorithms and improved its accuracy in damage
localization and severity estimation. In the second part, two existing algorithms and the
new algorithm were evaluated by predicting damage location and severity estimation in
a theoretical model of a two-span continuous beam. Each algorithm was assessed
quantifying the accuracy of damage localization and severity estimation results.
By applying the approach to the numerical example, we obtained the following

relationships between the algorithms and their accuracy in damage prediction. First, the use
of damage index A for the damage prediction exercises resulted in (1) relatively small Type
I error (false detection of true damage locations); (2) small localization error; (3) relatively
high Type II error (prediction of locations that are not damaged); and (4) high severity
estimation error. It consistently overestimated severities of damage by about 1)75 times of
the true damage sizes. Second, the use of damage index B resulted in no error related to
damage localization but high severity estimation error. It consistently underestimated
severities by about 0)15 times of the true damage sizes. Finally, the use of damage index
C resulted in no error related to damage localization and very small severity estimation
error. Compared to two other algorithms, damage index C enhanced the accuracy of the
damage localization and severity estimation results.
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